

CePd\_Al

300

Journal of Alloys and Compounds 218 (1995) L11-L13

Letter

## Magnetic behaviour of CePd<sub>2</sub>Al

I. Das<sup>a</sup>, E.V. Sampathkumaran<sup>a</sup>, A.K. Rajarajan<sup>b</sup>

<sup>a</sup> Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay-400005, India <sup>b</sup> Department of Physics, The University of Bombay, Kalina, Bombay-400098, India

Received 6 September 1994

## Abstract

The results of magnetic susceptibility, heat capacity and electrical resistivity measurements on CePd<sub>2</sub>Al suggest that this compound exhibits features attributable to antiferromagnetic ordering ( $T_N$  = 3.3 K) and Kondo effect.

500

400

30

20 (mol

Keywords: Magnetic behaviour; Heat capacity; Electrical resistivity; Kondo effect

Recently, several ternary rare-earth (R) compounds of the type,  $RT_2X$  (T = transition metals; X = sp metal), have been found to crystallize in three different types of structures [1-3]. Among these, attempts to synthesize  $YPd_2Si$ -type (an ordered variant of orthorhombic,  $Fe_3C$ ) representatives, RPd<sub>2</sub>Al, were successful only with R=Ce, Pr and Nd. Hulliger and Xue [2] reported on the basis of magnetic susceptibility  $(\chi)$  measurements that CePd<sub>2</sub>Al does not order magnetically down to 2 K. As a continuation of our investigation (see Ref. [4]) of ternary rare-earth compounds of this stoichiometry, we report here the characterization of CePd<sub>2</sub>Al by magnetic susceptibility  $(\chi)$ , heat-capacity (C) and electrical resistivity ( $\rho$ ) measurements.

The polycrystalline sample of CePd<sub>2</sub>Al was prepared by arc melting the constituent elements (minimum 3N grade) in stoichiometric proportions. Barring a few weak peaks (<5%), all the lines in the X-ray diffraction pattern could be indexed to the proper structure. The  $\chi$  measurements in the temperature interval 2–300 K in a magnetic field (H) of 5 kOe as well as isothermal magnetization (M) measurements at 2 K and 5 K were performed using a superconducting quantum interference device (SQUID). The C data in the temperature interval 2.5-100 K were obtained by a semi-adiabatic heat-pulse method using a set-up fabricated by ourselves [5]. The  $\rho$  measurements (2–300 K) were carried out by a conventional four-probe method.

The results of  $\chi$  and M measurements are shown in Fig. 1. The  $\chi^{-1}$  is a linear function of temperature (T) in the range 60-300 K and there is a deviation



CePd<sub>2</sub>Al in the temperature range 2-300 K. The data below 10 K is shown in an expanded form in the top inset. The bottom inset shows isothermal magnetization (M) as a function of magnetic field (H) at 2 K and 5 K.

from linearity below 30 K. The effective moment above 60 K is about 2.50  $\mu_{\rm B}$ , typical of trivalent Ce ions and the corresponding paramagnetic Curie temperature  $(\theta_p)$ is about -23 K. The value of  $\theta_p$  is reduced to about -10 K below 30 K. As shown in the top inset of Fig. 1,  $\chi^{-1}$  tends to flatten below about 4 K. In order to probe the nature of the low temperature state, we have performed isothermal magnetization measurements at 2 K and 5 K, the results of which are shown in the bottom inset of Fig. 1. Clearly, *M* is a non-linear function of *H* at 2 K, indicating the existence of a spin-flip transition at 20 kOe, a behaviour that is suppressed at 5 K. These observations suggest that this alloy exhibits antiferromagnetic-like ordering well below 4 K. It is to be noted that the magnitude of the low temperature  $\theta_p$  is quite large compared with the value of the Néel temperature ( $T_N$ =3.3 K), thereby indicating that the Kondo effect contributes to  $\theta_p$ .

In order to confirm the presence of magnetic ordering at 3.3 K, heat capacity measurements were performed. The results below 20 K alone are shown in Fig. 2, as there is no noticeable anomaly above 20 K. There is a sharp increase in C below about 4.0 K followed by a peak at 3.3 K confirming the existence of bulk magnetic ordering. It is rather difficult to quantify whether all the Ce ions order magnetically as (i) the magnetic contribution to C could not be obtained because of the non-existence of the La analogue [2] and (ii) possible persistence of the Kondo effect in the magnetically ordered state can reduce the entropy below 3.3 K. In addition to the peak below 3.3 K, a less intense peak could be seen at 6 K, which may arise from the magnetic ordering from Ce oxides present as an impurity. The plot of C/T vs.  $T^2$  is linear in the temperature range 10-20 K (see Fig. 3) and the linear coefficient ( $\gamma$ ) of heat capacity extrapolated to absolute zero is about 110 mJ mol<sup>-1</sup> K<sup>2</sup>. This finding may suggest that this alloy exhibits heavy-fermion behaviour, if there is no influence from the high temperature Schottky peak.

The results of  $\rho$  measurements are shown in Fig. 4. There is a  $\rho$  minimum at about 14 K, characteristic of



Fig. 2. Heat capacity as a function of temperature (2.5–20 K) for the alloy CePd<sub>2</sub>Al.



Fig. 3. Heat capacity (C) divided by temperature (T) for the alloy  $CePd_2Al$ .



Fig. 4. The electrical resistivity ( $\rho$ ) as a function of temperature (1.4-300 K) for the alloy CePd<sub>2</sub>Al.

Kondo effect. A distinct peak at 4 K followed by a drop could be seen attributable to magnetic ordering. In conclusion, the results of the  $\chi$ , C and  $\rho$  measurements on CePd<sub>2</sub>Al suggest that this compound is an antiferromagnetic, Kondo lattice ( $T_N = 3.3$  K). It is desirable to verify bulk magnetic ordering by neutron diffraction studies.

## Acknowledgments

We thank K.V. Gopalakrishnan for his help in SQUID measurements and R. Vijayaraghavan for his support.

## References

190 (1992) 125.

- [3] A. Szytula in K.H.J. Buschow (ed.), Handbook on Magnetic Materials, Vol. 6, Elsevier, Amsterdam, 1991, p. 85.
- [4] I. Das, E.V. Sampathkumaran, S. Chari and K.V. Gopalak-
- [2] F. Hulliger and B. Xue, J. Alloys Comp., 194 (1993) 179.

[1] F. Hulliger, K. Mattenberger and S. Siegrist, J. Alloys Comp.,

- rishnan, J. Alloys Comp., 202 (1993) L7.
- [5] I. Das and E.V. Sampathkumaran, Pramana, 42 (1994) 251.